Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis

Belinda R. Beck a, *, Robin M. Daly b, Maria A. Fiatarone Singh c, Dennis R. Taaffe d,e

a School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Australia
b Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Australia
c Exercise, Health and Performance Research Group, Faculty of Health Sciences and Sydney Medical School, The University of Sydney, Australia
d School of Medical and Health Sciences and the Exercise Medicine Research Institute, Edith Cowan University, Australia
e School of Human Movement and Nutrition Sciences, University of Queensland, Australia

ARTICLE INFO

Article history:
Received 23 December 2015
Received in revised form 9 September 2016
Accepted 9 October 2016
Available online 31 October 2016

Keywords:
Ageing
Balance
Bone
Exercise guidelines
Falls
Fracture prevention
Muscle
Osteopenia
Physical activity

ABSTRACT

Objectives: Osteoporotic fractures are associated with substantial morbidity and mortality. Although exercise has long been recommended for the prevention and management of osteoporosis, existing guidelines are often non-specific and do not account for individual differences in bone health, fracture risk and functional capacity. The aim of the current position statement is to provide health practitioners with specific, evidence-based guidelines for safe and effective exercise prescription for the prevention or management of osteoporosis, accommodating a range of potential comorbidities.

Design: Position statement.

Methods: Interpretation and application of research reports describing the effects of exercise interventions for the prevention and management of low bone mass, osteoporosis and osteoporotic fracture.

Results: Evidence from animal and human trials indicates that bone responds positively to impact activities and high intensity progressive resistance training. Furthermore, the optimisation of muscle strength, balance and mobility minimises the risk of falls (and thereby fracture), which is particularly relevant for individuals with limited functional capacity and/or a very high risk of osteoporotic fracture. It is important that all exercise programs be accompanied by sufficient calcium and vitamin D, and address issues of comorbidity and safety. For example, loaded spine flexion is not recommended, and impact activities may require modification in the presence of osteoarthritis or frailty.

Conclusions: Specific guidelines for safe and effective exercise for bone health are presented. Individual exercise prescription must take into account existing bone health status, co-morbidities, and functional or clinical risk factors for falls and fracture.

© 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

1. Background

What is osteoporosis? The widely accepted definition of osteoporosis, developed by the US National Institutes of Health Consensus Panel in 2000, is “a skeletal disorder characterised by compromised bone strength predisposing a person to an increased risk of fracture”. The operational definition of osteoporosis of the World Health Organization (WHO), and one that continues to be widely applied due to its diagnostic utility, is based on an estimation of bone mineral density (BMD, g/cm²) measured by dual-energy x-ray absorptiometry (DXA). According to the WHO, a DXA-derived BMD T-score (standard deviation, SD) of 2.5 or more below the mean for young adult Caucasian women constitutes a diagnosis of osteoporosis. A BMD T-score that falls between -1.0 and -2.5 SD is classified as osteopenia (low bone mass). In practice, race and sex-specific T-scores are typically used. While a diagnosis of osteoporosis is associated with a 2- to 3-fold increased risk of sustaining a fragility fracture, it is estimated that more than 50% of women and 70% of men who sustain a low trauma fragility fracture actually have a diagnosis of osteopenia rather than osteoporosis. Those data suggest that other skeletal factors beyond BMD, such as the size (cross-sectional area), structure (macro- and micro-architecture) and intrinsic properties (porosity, matrix mineralisation, collagen traits) of bone also play an important role...
in determining bone strength and fracture risk, along with non-
skeletal factors such as muscle strength and balance.\(^7\) Best research
practice therefore includes the characterisation of bone strength
using three-dimensional imaging techniques such as peripheral
quantitative computed tomography (pQCT) or magnetic resonance
imaging (MRI), in addition to BMD. Osteoporotic fracture can occur
at virtually any skeletal site; however, the bones most frequently
affected are the spine, hip, wrist, humerus and pelvis. Hip fractures
are the most devastating in terms of morbidity and mortality. As
more than 95% of hip fractures occur as a consequence of a fall,
strategies to optimise bone strength and reduce fall risk are likely
to prevent fractures most effectively.

What is the cost? Osteoporosis imposes a major personal, societal
and economic burden owing to the morbidity and mortality associ-
ated with fractures. Currently, nearly two-thirds of Australians over
50 suffer from low bone mass (30% of whom are male).\(^6\) In 2013,
there were almost 400 osteoporotic fractures per day in Australia;
a figure that is projected to increase to 500 per day by 2022.\(^5\) The
cost of osteoporosis and osteopenia to Australians in 2012, includ-
ing direct and indirect costs, was estimated to be $2.75 billion, and
is projected to rise to $3.84 billion in 2022, with a 10-year expected
cumulative cost of $33.6 billion.\(^6\)

As bone is a dynamic tissue with the capacity to adapt to chang-
ing load requirements, exercise is widely recognised as a vital
physical stimulus for the development and maintenance of optimal
bone strength throughout life. While the precise dose of exercise
to promote positive skeletal adaptations throughout life remains
to be determined, current evidence indicates that the effects of
exercise on bone are modality-, dose- and intensity-dependent. The
goal of the current position statement is to provide specific exer-

cise recommendations for the prevention and/or management of
osteoporosis and fragility/low trauma fractures, within the limits
of existing evidence.

2. Role of exercise in the prevention and treatment of low
bone mass

Regular physical activity provides a multitude of health benefits,
but not all exercise modalities are equally osteogenic. The dogma
that prolonged aerobic training, such as swimming, cycling, and
walking, is ubiquitously beneficial to all body systems is inconsis-
tent with empirical evidence suggesting none of those activities
provide a notable stimulus to bone.\(^7\)–\(^9\) Evidence from cohort stud-
iies that higher levels of self-reported physical activity are related
to higher bone mass is often inappropriately interpreted as evidence that
any activity will improve bone. While there are some reports that
brisk walking\(^10\) or walking combined with other impact load-
ning activities may help postmenopausal women offset age-related
bone loss,\(^11\) a meta-analysis of intervention studies reveals mini-
mal or no effect of regular walking and other low intensity activities
on bone in peri- and postmenopausal women.\(^12\) There is also evi-
dence that the inclusion of walking in an exercise program can
expose previously sedentary or frail older adults to an increased
risk of falling, thereby increasing the risk of fracture.\(^13\) Thus, despite
the benefits of regular walking on aerobic fitness, adiposity, and other
cardio-metabolic factors, simply prescribing walking in isolation is
insufficient to optimise bone health, and has little or no effect on
other fall- and fracture-related risk factors such as muscle mass,
strength and balance in postmenopausal women.\(^7\)

By contrast, other forms of exercise do have the capacity to
improve bone health. Many animal studies have informed our cur-
rent understanding of the adaptive responses that can be expected
from bone according to magnitude, rate and frequency of loading.
This evidence indicates that loading must (1) be dynamic not static
(i.e., cyclic not continuous),\(^14\) (2) induce relatively high bone strains
(deformations),\(^15\) and (3) be applied rapidly.\(^16\) Relatively few load-
ing cycles (repetitions) are required to elicit an adaptive skeletal
response if adequate load intensity is achieved.\(^17\) In fact, short bouts
separated by periods of rest are more effective than the same num-
ber of loads performed all at once, as bone cells will desensitise
to repetitive loading.\(^18\) Finally, as bone will adapt to customary
patterns of loading (e.g. running), diversification of loading (e.g.
mixed directional movements) is required to stimulate an adaptive
skeletal response.\(^19\)

Cross-sectional studies consistently demonstrate that ath-
letes engaged in high- or unusual-impact weight-bearing sports
with rapid rates of loading such as gymnastics,\(^20\) volleyball,\(^21\)
basketball,\(^22\) ballet dancing,\(^23\) football,\(^24\) power lifting,\(^25\)
tennis/squash,\(^26\) and figure skating\(^27\) have superior bone mass
at loaded skeletal sites compared to non-athletes or athletes in
non-weight-bearing or lower-impact sports.

Naturally, it is not practical to create exercise guidelines for
osteoporosis prevention or management based on technically and
physically challenging sports. More feasible activities to optimise
bone health at different stages of life have been examined in ran-
domised controlled trials (RCTs) designed to employ the principles
of optimal loading from animal studies. As a comprehensive sum-
mary of all studies is beyond the scope of this paper, only results
from the most methodologically sound RCTs form the basis of our
recommendations.

Overall, RCTs and meta-analyses indicate that exercise training
involving certain forms of weight-bearing impact exercise, such as
hopping and jumping, and/or progressive resistance training (PRT),
alone or in combination (multi-modal programs), can improve
the bone health of children and adolescents,\(^28\) pre-\(^29\) and
postmenopausal women,\(^30\) and older men.\(^31\) Effect sizes are smaller
than those observed in animal or cross-sectional studies of athletes,
as genetic and environmental factors influence the response. Many
trials have reported relatively modest benefits of exercise to BMD in adulthood - preventing loss or promoting gains in the order of only 1–3% following exercise interventions of between
24 and 104 weeks.\(^32\) It is possible the exercise protocols of those
studies applied an insufficient stimulus to increase BMD. Exercise
training may, however, enhance whole bone strength, indepen-
dent of changes in BMD, through alterations in bone structure
and/or localized adaptation in bone distribution at sites subjected
to the greatest strain.\(^33,34\) An increase in cortical thickness due to
load-induced periosteal apposition and, to a lesser extent reduced
diend cortical resorption, will increase the resistance of a bone to
bending.\(^35\) However, findings from the limited number of trials
that have examined the effects of exercise on bone structure and
strength are mixed.\(^36\)

The greatest skeletal benefits to the spine and hip from PRT
have been achieved when the resistance (weight) was progres-
sively increased over time, the magnitude of loading was high\(^37\)
(around 50%–80% 1 repetition maximum [RM]), training was per-
formed at least twice a week, and large muscles crossing the hip
and spine were targeted.\(^30\) The spine may respond to PRT more
than the hip.\(^38\) Power training (high-velocity concentric PRT) may
be indirectly beneficial to bone owing to a slightly greater effect on
muscle power and functional performance than regular strength
training.\(^39\)

Programs that incorporate moderate-to-high weight bear-
ing impact loads (>2 times body weight) that are progressive,
novel and multidirectional can be osteogenic for premenopausal
women and older adults.\(^40,41\) Relatively few impacts (10–50/day,
3 times/week\(^42\) are required to stimulate the response in
premenopausal women, but added benefit may be derived from more
frequent exposure (4–7 days/week).\(^43\) Impact loading appears
to generate a greater response at the hip than the spine in
premenopausal women.\(^44\) In older women, the skeletal response to
high impact activities is less consistent, with some but not all trials reporting positive effects.35,45 It is possible that technique and compliance (which may be related to pain from comorbidities such as osteoarthritis) has governed the modest response to weight-bearing impact exercise observed in older individuals. Novel or diverse loading patterns may be particularly important for effective stimulation of bone in older adults not able to tolerate high magnitude impact loads,42 but the safety and efficacy of such movement patterns for bone and joints in the older person requires further investigation. Some exercise programs that have combined both high intensity PRT and moderate-to-high impact activities such as running, jumping, skipping and high impact aerobics have improved multiple musculoskeletal outcomes for both older women and men, including BMD, and muscle mass, strength and function.48,49 The ground reaction forces associated with many common impact activities have been described,50 in order to inform efficacious exercise prescription for bone.

In light of the strong association between falls and osteoporotic fractures, any exercise program designed to prevent fractures in the elderly, particularly those with known risk factors for falling, should include activities to optimise muscle function, balance and gait stability. In most cases, falls prevention programs that are focused on balance and mobility, including Tai Chi or the well-known Otago Home Exercise Program, do not induce the necessary bone strain to stimulate adaptive skeletal benefits in older people,51,52 but may play a vital role in neuromuscular conditioning.53 Many older adults fall when their attention is divided by dual tasking (e.g. walking whilst maintaining a conversation).54 Dual task training, such as exercising whilst performing a secondary cognitive and/or motor task, may improve functional performance under both single and dual task conditions.35

Certain other types of exercise that do not notably enhance bone mass or directly reduce fall risk may be beneficial. For example, back extension exercises strengthen the muscles55 that oppose kyphotic curvature in the thoracic spine that frequently develops following disk degeneration and vertebral wedge fracture. As kyphotic posture is associated with impaired balance in the elderly with osteoporosis,56 back extension exercise may indirectly reduce falls risk. There is some evidence that back extension exercise training reduces vertebral fractures in postmenopausal women in the long term, even in the absence of increased bone mass.56

No exercise recommendations for the prevention of osteoporosis would be complete without reference to the powerful influence of age on the adaptive response of bone to loading. It has been theorised that achieving a 10% higher peak bone mass in young adulthood could delay the development of osteoporosis by around 13 years, and ultimately reduce the lifetime risk of fracture by 50%.58 While there is no experimental evidence from large life-long studies required to test such a notion, a growing body of evidence suggests that adaptations to mechanical loading in youth translate to greater bone strength over a lifetime.55 Further, it is generally accepted that the skeleton is more responsive to exercise in childhood than in adulthood and older age.56 Additionally, the benefits of targeted exercise appear to be sustained, even after the intervention ceases, if initiated in childhood,59 but not in adulthood.60 Age-related bone loss is very evident in adults who are inactive.61,62 For this reason, although osteoporosis is considered to be primarily a condition of old age, exercise prescription for the prevention of osteoporosis should begin in childhood and continue throughout life. Recent longitudinal data however indicates that it’s never too late to start, as exercise training may prevent fracture even when initiated post menopause.63 Exercises that are appropriate to build bone in childhood mirror those that are most effective in adulthood (high impact weight-bearing activities that engage large muscle groups), however, frailty and comorbidity may temper exercise capacity for some older adults.

3. Exercise prescription – boundaries of the evidence

The application of osteogenic exercise principles from the results of animal studies to the human condition has not been a trivial matter. Human data are confounded by an inability to control many variables that exert profound influence on bone; including genes, certain diseases, medications, diet and exercise history. To the best of our knowledge, none of the many human trials have managed to fully control those constraints. As a result, precise recommendations for the optimal modality, dose, frequency and intensity of exercise required to strengthen bones for all individuals and under all circumstances are yet to be fully validated. There is, however, strong evidence to support the basic principles outlined below.

Exercise intensity is key to effective exercise prescription for bone; however the definition of intensity for PRT and impact loading is not straightforward. We employ a combination of an established classification system for PRT,64 ground reaction force data,50 and the Borg scale of perceived exertion65 to clarify our classifications of intensity in our exercise prescription guidelines (Table 1 legend).

Falls prevention trials have rarely targeted balance alone as an outcome measure, and the intensity of challenge to balance has been poorly described.66 thus specific guidelines for effective balance training to prevent osteoporotic fracture are lacking. The recommendations for balance training in Table 1 therefore represent an extrapolation of dose from the findings of a recent meta-analysis of exercise interventions to prevent falls.13

4. Exercise prescription – recommendations (summarised in Table 1)

An exercise program of moderate to high-impact weight-bearing activities, high intensity PRT and balance training forms the basis of the current recommendations. While frail individuals would theoretically benefit from a similar program of osteogenic exercise, limitations in clinical or functional capacity may necessitate a more conservative approach, with a particular focus on optimising muscle function and enhancing balance to reduce the risk of falling.13,53

Thus, an exercise prescription should take account of an individual’s BMD and functional and clinical risk factors for falls and fracture. The latter could include: age, frailty, sarcopenia, loss of height, family history of osteoporosis, presence of back pain or osteoarthritis, history of fractures and falls, presence of certain diseases known to affect bone metabolism, early or surgically-induced menopause, low testosterone (men), prolonged use of certain drugs (e.g. corticosteroids), inadequate dietary calcium, vitamin D deficiency, excessive alcohol intake, smoking, and previous physical activity. As falls are a major cause of fracture, gait, balance, mobility, transfer ability, range of motion, muscle strength (particularly of the trunk, elbow, hip and knee extensors) and vision should also be considered. Individual goals, preferences and interests should be considered in order to maximise exercise adherence and long-term compliance.

The following section outlines the exercise goals and prescription guidelines for individuals classified into three levels of risk of low trauma fracture (see also Table 1).

1. Low-risk individuals: We define “low risk” of low trauma fracture as being asymptomatic of osteoporosis, with ‘normal’ BMD (T-score above -1.0 SD) and functional status, and no clinical risk factors for falls or fracture (e.g. children/adolescents and healthy adults). The goal of a bone-targeted exercise program for low-risk individuals is to maximise bone mass and strength, and to
Table 1
Exercise prescription for the prevention and management of osteoporosis according to level of risk for fragility fracture.

<table>
<thead>
<tr>
<th>Exercise mode</th>
<th>Exercise components</th>
<th>Low-risk* individuals (prevention of OP)</th>
<th>Moderate-risk** individuals (prevention of OP)</th>
<th>High-risk*** individuals (management of OP and prevention of falls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact loading</td>
<td>Vertical and multidirectional jumping, bounding, hopping, skipping rope, drop jumps and bench stepping. Progress BW intensity by increasing heights for activities such as bounding and drop jumping, adding weighted vests and changing directions. Impact loading can be interspersed between balance and resistance training exercises, using weighted vests, changing direct of movement</td>
<td>Intensity: High impact activities (>2 BW), as tolerable Frequency: 4–7 d/wk Sets/Repetitions: 50 jumps per session (3–5 sets of 10–20 repetitions with 1–2 min rest between sets)</td>
<td>Intensity: Moderate-to-high impact activities (>2 BW), as tolerable Frequency: 4–7 d/wk Sets/Repetitions: 50 jumps per session (3–5 sets of 10–20 repetitions with 1–2 min rest between sets)</td>
<td>Intensity: Moderate impact activities (2–3 BW), within the limits of pain, increasing as tolerated. Frail individuals will require a period of PRT to develop adequate strength to perform some impact activities. Frequency: 4–7 d/wk Sets/Repetitions: Aim to work up to 50 repetitions over time (5 sets of 10 repetitions with 1–2 min rest between sets)</td>
</tr>
<tr>
<td>Progressive resistance training (PRT)</td>
<td>8 exercises per session targeting major muscle groups attached to the hip and spine including (on a rotating system): weighted lunges, hip abduction/adduction, knee extension/flexion, plantar-/dorsi-flexion, back extension, reverse chest flys, and abdominal exercises, or a smaller number of compound movements such as squats and deadlifts.</td>
<td>Intensity: High to very high (60–85% 1RM; >16 on Borg 6–20 point RPE scale or ‘Very hard’) Frequency: 2 d/wk Sets/Repetitions: 2–3 sets of 8 repetitions Consider including high velocity (rapid) PRT exercises to enhance muscle power and function Avoid deep forward spine flexion. Training in technique and supervision is essential.</td>
<td>Intensity: High to very high (60–85% 1RM; >16 on Borg 6–20 point RPE scale or ‘Very hard’) Frequency: 2 d/wk Sets/Repetitions: 2–3 sets of 8 repetitions Consider including high velocity (rapid) PRT exercises to enhance muscle power and function Avoid deep forward spine flexion. Training in technique and supervision is essential.</td>
<td>Intensity: High to very high (60–85% 1RM; >16 on Borg 6–20 point RPE scale or ‘Very hard’) Frequency: 2 d/wk Sets/Repetitions: 2–3 sets of 8 repetitions Consider including high velocity (rapid) PRT exercises to enhance muscle power and function Avoid deep forward spine flexion. Training in technique and supervision is essential.</td>
</tr>
<tr>
<td>Balance training</td>
<td>Standing and moving exercises with gradual reduction in base of support to standing on one foot, perturbing the centre of mass with leaning and reaching then regaining balance with minimal use of support from the upper extremities. e.g. Tai Chi, single leg stance, tandem stance, tandem walk, backwards, sideways and crossover walks, circle and pivot turns, figure of eight walks, stepping over and avoiding obstacles, walking on uneven surface. Progress by altering surface (foam mats) and reducing base of support, longer or faster steps, heel and toe walks, raised arms walk, withdrawing vision during balance tasks, and dual tasking (e.g. cognitive task such as counting backwards, naming animals, combined with balance activities).</td>
<td>Intensity: Challenging Frequency: Incorporate balance activities where possible into strength and impact elements of the exercise programme. Tasks performed with eyes closed should be done in proximity to a railing or other secure support.</td>
<td>Intensity: Challenging Frequency: 4 sessions/wk Sets/Repetitions: 30 min of a variety of balance exercises per session; at least 10 sec per balance exercise and at least 10 steps forward and back for mobility exercises, increasing as tolerated to longer durations Could be accomplished within other exercise bouts during the course of a week</td>
<td>Intensity: Challenging Frequency: 4 sessions/wk Sets/Repetitions: 30 min of a variety of balance exercises per session; at least 10 sec per balance exercise and at least 10 steps forward and back for mobility exercises, increasing as tolerated to longer durations Could be accomplished within other exercise bouts during the course of a week</td>
</tr>
</tbody>
</table>

*Low-risk = asymptomatic individual with normal BMD (T-score above -1.0 SD) and functional status, and no clinical risk factors for falls or fracture

**Moderate-risk = low bone mass (T-score -1.0 to -2.5 SD) and/or certain clinical or functional risk factors for fracture

***High-risk = very low bone mass (T-score less than -2.5 SD) (osteoporosis) and/or a number of clinical or functional risk factors for fracture

† High impact activities (>4 BW) include landings from exertional jumps such as high vertical jumps, star jumps, tuck jumps, and drop landings; including within sports such as volleyball, basketball, gymnastics, ballet, Australian Rules Football, etc. ‡ moderate impact activities (2–3 BW) include running, stride jumps, jump rope, side steps, highland-type dancing, jump take offs and hops; including within sports such as, racquet sports, track events, most field sports and martial arts that include frequent jumps.

§ moderate-to-high impact activities (> 2 BW) include all of the activities listed for the moderate and high impact categories (Adapted from Weeks and Beck 19)

‡ Rate of progression of PRT for novice exercisers should be 50%, 60%, 70%, and 80% of 1RM for the first 4 sessions to ensure correct technique and appropriate muscle conditioning. Intensity and rate of progression will vary based on level of individual risk within each category.

#Challenging = attempting a level not yet mastered (i.e. the entire time, distance or activity cannot be completed without losing balance).

BW, body weight; OP, osteoporosis; RM, repetition maximum, the maximum weight that can be lifted once; RPE, rating of perceived exertion (Borg 6–20-point scale categories of RPE intensity 19).
improve muscle strength and functional capacity. Thus, a variety of progressively increasing impact activities that include jumps and/or hops and multidirectional weight-bearing exercises, as well as recreational sporting activities (e.g. gymnastics, basketball, netball, volleyball), and PRT (including major muscle groups and back extension) are recommended. Balance training should be initiated to prevent age-related deterioration. Low intensity repetitive aerobic activities (e.g. walking) or non-weight bearing activities (swimming, cycling) are not recommended, being largely ineffective for improving BMD, but could form part of a comprehensive program to improve aerobic fitness and other health outcomes.

2. Moderate-risk individuals: We define “moderate risk” of low trauma fracture as having low bone mass (T-score –1.0 to –2.5 SD) and/or certain clinical or functional risk factors for fracture (described above). For moderate-risk individuals, the goal of an exercise program is to preserve or improve bone mass and strength, and improve muscle strength, power, and balance. Similar weight-bearing impact activities and PRT activities as prescribed for low-risk individuals are recommended. More moderate impact activities such as running, jump rope, racquet sports, and field sports may be more appropriate for individuals approaching a T score of –2.5. For some, a period of moderate advancing to high-intensity PRT may also be required to condition the musculoskeletal system before introducing impact exercises. There should be demonstrated pain-free competency in all activities. Progressively challenging balance, posture and mobility exercises should be a greater focus than for low-risk individuals, to prevent falls. Specific details about the type and progression of exercise for falls prevention have been described previously.

3. High-risk individuals: We define “high risk” of low trauma fracture as having osteoporosis (T-score less than –2.5 SD), previous fracture, and/or multiple risk factors for fracture. The absolute magnitude of load that can be applied to an osteoporotic skeleton without incurring a fracture is unknown. Counter to the traditional notion that high-intensity loading places osteoporotic bone at acutely increased risk of fracture, emerging evidence in osteopenic and osteoporotic women over 60 years of age (mean age 66.1 years, mean T-score <–2.2 at the spine) indicates that high load PRT and moderate impact loading may not only improve bone mass and reduce kyphosis, but be safe and well-tolerated in this population. However, supervision, an emphasis on correct technique, gradual loading increments, and avoidance of activities that might increase falls, are essential.

Recent consensus guidelines recommended that individuals with vertebral osteoporosis engage in a multicomponent exercise program that includes PRT, in combination with mobility and balance training, provided with guidance on safe movements. High-risk individuals will benefit from improved muscle strength in the back, legs, upper arms and core, and enhanced posture, balance and co-ordination. Exercises for lower extremity muscles should focus on every major group around each joint. Back strengthening and postural exercises will reduce forward head posture, improve shoulder range of motion and trunk stability, and reduce vertebral fractures over time. Elbow extensor strength is critical for facilitating transfers (moving the whole body using only the arms) and is related to reduced risk of nursing home admission after hip fracture. Exercises should be introduced in the order dictated by impairment, that is, to stand up and walk across a room, muscle strength, balance, and endurance will be required, in that order. Therefore, the exercise prescription progression for someone who is frail to the point of transfer and mobility impairment is most logically PRT, then balance training, followed by weight bearing activity.

Table 1 provides a baseline exercise prescription for the prevention or management of osteoporosis. A minimum of two weekly sessions of PRT, four to seven weekly sessions of impact activities, and balance training are recommended. Greater neuromusculoskeletal benefits could be expected with increased dose and/or intensity of loading, however an upper limit of efficacy is not known. A period of conditioning at lower intensity may be necessary to achieve the intensities described for impact and PRT (see Table 1 footnote).

5. Special considerations

Individuals with the lowest bone mass and/or the lowest levels of previous exercise exposure are likely to exhibit the greatest response to increased exercise loading. Those with average or above average bone health are unlikely to experience notable increases in bone mass in response to exercise, unless the nature of the loading differs substantially from and/or imposes considerably higher levels of bone strain than habitual patterns. However, increasing muscle strength and balance will reduce fall risk and are therefore recommended for such individuals.

Table 2 provides specific modifications to exercise recommendations for persons with common comorbidities, including osteoarthritis, frailty/neuromuscular impairment, and/or cardiopulmonary disease.

The clinical community has traditionally discouraged repetitive impact exercise for individuals with hip or knee osteoarthritis (OA). However, a recent study has shown that progressive high impact exercise training can benefit bone without adversely affecting joint cartilage of mildly osteoarthritic postmenopausal women. As it is not known whether more severe forms of arthritis would respond as favourably, it may be prudent to prescribe low-to-moderate impact activities and moderate-to-high intensity PRT in this population until further evidence is available.

The importance of dietary calcium and vitamin D to bone health is well-established. The skeletal benefits of exercise may be attenuated against a background of inadequate dietary calcium. In addition, vitamin D deficiency has been associated with sarcopenia and an increased risk of falling and fracture in old age. Whether vitamin D supplementation will prevent falls or fracture is controversial. Nevertheless, to maximise the benefits of exercise for musculoskeletal health and function it is recommended to achieve the recommended dietary intakes of calcium from dietary sources and sufficient vitamin D from sun exposure or supplements.

6. Contraindications to exercise

As with any exercise recommendation, certain caveats apply. Individuals with known vertebral osteoporosis/kyphosis should avoid deep forward flexion activities, particularly when lifting a load or carrying an object (e.g. rowing, lifting weights with a flexed spine, yoga, Pilates, bowling, sit-ups, house and yard work), in order to avoid vertebral wedge fractures. Similarly, high-impact activities and exercises that require rapid and/or loaded twisting, and explosive or abrupt actions (e.g., golf, racquet sports) may be contraindicated for some individuals at high risk of low trauma fracture, particularly those with vertebral osteoporosis, poor balance, or osteoarthritis. High-risk individuals should receive training in safe lifting and postural techniques to avoid dangerous or excessive loading during common daily tasks or recreational activities. Exercise prescription for individuals with pain, kyphosis and/or poor balance must be individualised and supervised. Exercises that are difficult to perform on dry land or standing may be conducted in warm water, seated in a chair, or prone, but the latter are unlikely
to be osteogenic. A summary of potential risks and management strategies is provided in Table 3.

Finally, exercise recommendations for the prevention or management of osteoporosis must be undertaken within the boundaries of exercise restrictions for comorbid conditions.

7. Gaps in the literature

There are two main gaps in the literature. The first is that there has never been a study conducted with sufficient statistical power and duration to adequately examine dose responses to exercise at all stages of life and levels of risk of low trauma fracture. Consequently, it is not possible to provide definitive guidelines for the precise amount, intensity and duration of exercise that will stimulate optimal gains in bone for every individual. The second is that although it is clear that appropriately prescribed exercise enhances bone health and reduces falls risk, there is a paucity of experimental evidence that exercise will prevent osteoporotic fractures. It has been estimated that to power the definitive exercise intervention trial for a hip fracture endpoint in women, a sample size of over 7000 individuals at high risk of low trauma fracture would be required, which would take many years to recruit at a prohibitive financial cost.76 The number would be far greater for a sample of men.

There is, however, evidence to support fracture prevention efficacy of exercise from Cochrane reviews,53,77 meta-analyses,78 and a small but long-term targeted exercise intervention of postmenopausal women.53 In general, the reviews and meta-analyses of the effects of physical activity and exercise on bone report a protective effect with a risk reduction of up to 50% or more. Meta-analyses and systematic reviews must be interpreted with caution in light of (1) replication of sampling bias from cohort studies,76 (2) reporting of fractures as only a secondary endpoint or adverse event in most exercise interventions, and (3) evidence of publication bias.78 A non-randomised exercise trial for early postmenopausal women observed significantly reduced risk of low trauma fracture in the exercise group after 16 years (RR 0.51, 95% CI 0.23–0.97; p = 0.046).63 Nevertheless, insufficient direct experimental evidence limits the ability to draw definitive conclusions with regards to the influence of exercise on fracture incidence.

8. Summary

Exercise is a vital strategy in the prevention and management of osteoporosis, if appropriately prescribed. For the healthy individual whose goal is to prevent osteoporosis, lifelong exercise including regular, brief, weight-bearing, high-impact exercise and high intensity PRT is recommended. Although the optimal dose of exercise for bone health and fracture prevention is yet to be fully determined from human trials, a minimum of two sessions of PRT, four to seven sessions of impact activities, and balance training, as described in Table 1, are recommended. It is also recommended that a variety of activities are undertaken, so the skeleton continues to be exposed to unfamiliar patterns of loading. Adequate calcium and vitamin D will complement exercise programs for musculoskeletal health and function. For the high-risk individual with established osteoporosis and increased risk of fracture, falls prevention programs with a focus on balance and mobility training and high intensity PRT are essential. High load PRT and moderate impact loading may not only improve bone mass and reduce kyphosis, but be safe and well-tolerated in older adults with low bone mass. Ongoing supervision is required for individuals at high risk of low trauma fracture and those unaccustomed to high intensity exercise. Correct technique, particularly for exercises loading the spine, is imperative to

<table>
<thead>
<tr>
<th>Exercise modality</th>
<th>Modification for Arthritis</th>
<th>Modification for Frailty/Neuromuscular Impairment</th>
<th>Modification for Cardiovascular/Pulmonary Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRESSIVE RESISTANCE TRAINING</td>
<td>Provide careful attention to form to prevent injuries</td>
<td>Usually little modification required</td>
<td>Usually no modification required</td>
</tr>
<tr>
<td></td>
<td>May need to limit range to pain-free motion, provide good back support, adjust machines or free weights to accommodate joint deformities or restrictions</td>
<td>May need to alter certain exercises for neurological impairment</td>
<td>If angina or ischemia is provoked by exercise, keep intensity below the level at which this occurs</td>
</tr>
<tr>
<td></td>
<td>Intensity may need to be individualized for some exercises</td>
<td>Supervision usually needs to be more intense for safety and progression</td>
<td>May need to perform exercises in seated rather than standing positions due to fatigue or poor balance</td>
</tr>
<tr>
<td></td>
<td>Maintain a fixed dose of medication on a regular schedule if arthritis pain is chronic</td>
<td></td>
<td>Avoid breath holding/Valsalva manoeuvre, isometric contractions longer than 5–10 seconds, or tight handgrip during weightlifting</td>
</tr>
<tr>
<td>HIGH IMPACT EXERCISE</td>
<td>May need to reduce or eliminate high ground-reaction forces (replace jumps with heel drops) Substitute power training (rapid concentric muscle contraction against moderate-to-high load on weight-lifting machine) to produce rapid onset of high muscle contraction forces like a take-off in a jump, but with no impact landing</td>
<td>Start with heel drops instead of jumps Perform exercises under supervision and holding onto a support rail initially</td>
<td>Keep training intensity below the level that causes ischemia or severe dyspnoea</td>
</tr>
<tr>
<td></td>
<td>May not be able to place full body weight on osteoarthritic joints – use less painful leg to perform one-legged postures, assist weight bearing with use of cane</td>
<td>Gradually reduce hand support as tolerated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keep sessions short to avoid pain from prolonged weight bearing Reduce angle of flexion at knee during T’ai Chi movements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Fiatarone Singh.79

a Recommended exercises include leg press, squats, knee extension, hip abduction, hip flexion, dorsiflexion, military press, lat pull down, back extension, abdominal training

b One-legged standing, tandem walking, crossover walking, turning, stepping over objects, leaning to limits of sway, etc.
avoid increasing the risk of vertebral fracture. Individuals should be screened for other fall risk factors and counselled with respect to methods to reduce those risks in their everyday lives.

References

40. Vainionpaa A, Korpelainen R, Vihriala E et al. Intensity of exercise is associ-
41. Allison SJ, Folland JP, Rennie WJ et al. High impact exercise increased femoral
on bone mineral density in healthy premenopausal women; the Sendai Bone
43. Bailey CA, Brooke-Wavell K. Optimum frequency of exercise for bone health;
randomised controlled trial of a high-impact unilateral intervention. Bone 2010;
44. Babatunde OO, Nyth YJ, Gidlöf CJ. A meta-analysis of brief high-impact exer-
cises for enhancing bone health in premenopausal women. Osteoporos Int 2012;
45. Bassey EJ, Rothwell MC, Littlewood JJ et al. Pre- and postmenopausal women
have different bone mineral density responses to the same high-impact exercise.
46. Snow CM, Shaw JM, Winters KM et al. Long-term exercise using weighted vests
47. Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in
older adults: a meta-analysis of randomized controlled trials. Age (Dordr) 2012;
and hip EPOPS: a 3-year longitudinal study in early postmenopausal women.
Osteoporos Int 2006; 17(1):133–142.
49. Kukuljan S, Nowson CA, Bass SL et al. Effects of a multi-component exercise pro-
gram and calcium-vitamin-D3-fortified milk on bone mineral density in older
50. Weeks BK, Beck BR. The FPASCX a bone-specific physical activity assessment
51. Woo J, Hong A, Lau E et al. A randomised controlled trial of Tai Chi and resis-
tance exercise on bone health, muscle strength and balance in community-living
52. Duckham R, Masud T, Taylor R et al. Randomised controlled trial of the
effectiveness of community group and home-based falls prevention exercise
programs on bone health in older people: the ProAct65+ bone study. Age Ageing
53. Gillespie LD, Robertson MC, Gillespie WJ et al. Interventions for preventing
falls in older people living in the community. Cochrane Database Syst Rev 2012;
9:CD007146.
54. Chi NN, Taitt TF, Peng YC et al. Meta-analysis of type and complexity of a sec-
ondary task during walking on the prediction of elderly falls. Geriatr Gerontol Int
55. Siltanen P, Shumway-Cook A, Lugade V et al. Effects of single-task versus dual-task
training on balance performance in older adults: a double-blind, ran-
56. Sinaksi M, Iori E, Wahner HW et al. Stronger back muscles reduce the incidence
of vertebral fractures: a prospective 10 year follow-up of postmenopausal women.
57. Greig AM, Briggs AM, Bennell KL et al. Trunk muscle activity is modified in osteo-
porotic vertebral fracture and thoracic kyphosis with potential consequences
58. Hernandez Cj, Beaupre GS, Carter DR. A theoretical analysis of the relative
impacts of peak BMD, age-related bone loss and menopause on the development
59. Weeks BK, Beck BR. Are bone and muscle changes from POWER PE, an 8-month
in-school jumping intervention, maintained at three years? PLoS ONE 2012;
7(6):e39133.